Author's Solution for the cash award question-01.08.2023

Our Author is known for his distinct style of solving the Geometric problems. Let's see below how novelly he handles the concerns and solves this problem.

Construction:

Join OT \& OS. Let the meeting point of PQ \& RC be G.

Solution:

Result: Let us see an important result, before going to solution See box below.
$\Delta \mathrm{ABC}$ is inscribed in a circle. AD , the altitude to BC is produced to meet the circle at $P . B E$ is the altitude to $C A$ and O is the Orthocenter. Prove that $O D=D P$.

To prove:-
OD = DP

Construction:-

Join BP
Proof:-

$$
\angle P B C=\angle P A C \text { (Angles in the same segment) } \ldots . . \text { (1) }
$$

ABDE is concyclic $\left[\because \angle A D B=\angle A E B=90^{\circ}\right]$
$\Rightarrow \angle D B E=\angle D A E$ \qquad
(1) \& (2) $\rightarrow \angle P B D=\angle O B D$
$\therefore \mathrm{BD}$ is the perpendicular bisector of OP.
OD = DP
Proved.
(This result is available in page no. 15 of the author's book "The Novelties of Geometry")

See Picture:

Vide the above result we have proved OD=DP
\therefore TDS is the perpendicular bisector of OP
$\therefore \mathrm{OT}=\mathrm{TP} \& \mathrm{OS}=\mathrm{SP}$
$\angle A B Q=\angle A P Q$-------------(1) [Angles in the same segment]
$\angle A P R=\angle A C R$
(2) [Angles in the same segment]
$\angle O B F=\angle O C E$ \qquad [$F B C E$ is concyclic, as $\angle F \& \angle E$ are right angles] ie $\angle A B Q=\angle A C R$

(1), (2) \& (3) \rightarrow
$\angle A P R=\angle A P Q$
$\Rightarrow P O$ is the angle bisector of $\angle T P S$
\therefore TD $=\mathrm{DS} \quad(\because O P \perp T S)$
\Rightarrow OP \& TS are diagonals of Quadrilateral OTPS and they are perpendicular bisectors for each other. Therefore TOSP is a Rhombus
$\therefore \mathrm{OT}=\mathrm{OS}=\mathrm{PS}=\mathrm{PT}$
And SO || TP
Now, consider $\triangle O T R \& \triangle G S O$.
$\angle S O G=\angle T R O$------------------- (4) [SO || TP or RP]
$\angle O T R=180^{\circ}-\angle O T D-\angle R T B-------(5)$
$\angle G S O=180^{\circ}-\angle O S T-\angle G S C$
$\angle G S C=\angle R T B \quad--------------(7)[\because \angle P T S=\angle P S T]$
And $\angle O T D=\angle O S D$
$(5),(6),(7) \&(8) \rightarrow$
$\angle O T R=\angle G S O$
(4) \& (9) \rightarrow
$\triangle O T R \& \Delta G S O$ are similar
$\therefore \frac{O T}{G S}=\frac{T R}{S O}$
$\Rightarrow \frac{P S}{G S}=\frac{T R}{T P}$
(10) $[\mathrm{OT}=\mathrm{PS} \& \mathrm{TP}=\mathrm{SO}]$

But $S M$ \| $G R$ [Given]
$\Rightarrow \frac{P S}{S G}=\frac{P M}{M R}$
(10) \& (11) \rightarrow
$\frac{T R}{T P}=\frac{P M}{M R}$
$\Rightarrow \frac{P R-T P}{T P}=\frac{P R-M R}{M R}$
$=\frac{P R}{T P}-1=\frac{P R}{M R}-1$
ie $\frac{P R}{T P}=\frac{P R}{M R}$
$\therefore T P=M R$

