Author's Solution for the cash award question - 01.08.2023

Our Author is known for his distinct style of solving the Geometric problems. Let's see below how novelly he handles the concerns and solves this problem.

Construction:

Join OT & OS. Let the meeting point of PQ & RC be G.

Solution:

<u>Result</u>: Let us see an important result, before going to solution See box below.

 Δ ABC is inscribed in a circle. AD, the altitude to BC is produced to meet the circle at P. BE is the altitude to CA and O is the Orthocenter. Prove that OD=DP.

To prove: OD = DPConstruction:-Join BP Proof:- $\angle PBC = \angle PAC$ (Angles in the same segment)......(1) ABDE is concyclic [: $\angle ADB = \angle AEB = 90^{\circ}$] $\Rightarrow \angle DBE = \angle DAE$ (2) (1) & (2) $\rightarrow \angle PBD = \angle OBD$ $\therefore BD$ is the perpendicular bisector of OP. OD = DP ------ Proved. (This result is available in page no. 15 of the author's book "The Novelties of Geometry")

See Picture:

Vide the above result we have proved OD=DP \therefore TDS is the perpendicular bisector of OP \therefore OT = TP & OS = SP $\angle ABQ = \angle APQ$ ------(1) [Angles in the same segment] $\angle APR = \angle ACR$ ------(2) [Angles in the same segment] $\angle OBF = \angle OCE$ ------ [FBCE is concyclic, as $\angle F \& \angle E \text{ are right angles}$] ie $\angle ABQ = \angle ACR$ ------(3) (1), (2) & (3) \rightarrow $\angle APR = \angle APQ$

 \Rightarrow PO is the angle bisector of $\angle TPS$

 $\therefore \mathsf{TD} = \mathsf{DS} \qquad (\because OP \perp TS)$

 \Rightarrow OP & TS are diagonals of Quadrilateral OTPS and they are perpendicular bisectors for

each other. Therefore TOSP is a Rhombus

 \therefore OT = OS = PS = PT

And SO || TP

Now, consider $\triangle OTR \& \triangle GSO$.

 $\angle SOG = \angle TRO$ ------ (4) [SO || TP or RP]

 $\angle OTR = 180^\circ - \angle OTD - \angle RTB$ -----(5)

 $\angle GSO = 180^\circ - \angle OST - \angle GSC$ (6)

 $\angle GSC = \angle RTB$ ------(7) [:: $\angle PTS = \angle PST$]

And $\angle OTD = \angle OSD$ -----(8)

 $(5),(6),(7) \& (8) \rightarrow$

 $\angle OTR = \angle GSO$ -----(9)

(4) & (9) →

 $\Delta OTR \& \Delta GSO$ are similar

 $\therefore \frac{OT}{GS} = \frac{TR}{SO}$ $\Rightarrow \frac{PS}{GS} = \frac{TR}{TP} - \dots (10) \quad [OT=PS \& TP = SO]$ But $SM \parallel GR \quad [Given]$ $\Rightarrow \frac{PS}{SG} = \frac{PM}{MR} - \dots (11)$ $(10) \& (11) \rightarrow$ $\frac{TR}{TP} = \frac{PM}{MR}$ $\Rightarrow \frac{PR-TP}{TP} = \frac{PR-MR}{MR}$ $= \frac{PR}{TP} - 1 = \frac{PR}{MR} - 1$ $ie \frac{PR}{TP} = \frac{PR}{MR}$ $\therefore TP = MR - \dots Proved$
